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Chapter 1

Introduction
}, :: ::

This document is an adjunct to the final report An Integrated Safety Analysis

Methodology for Emerging Air Transport Technologies. That report presents the

results of our analysis of the problem of simultaneous but independent, ap-

proaches of two aircraft on parallel runways (independent approaches on parallel

runways, or IAPR). This introductory chapter presents a brief overview and per-

spective of approaches and methodologies for performing safety analyses for

complex systems. Ensuing chapters provide the technical details that underlie the

approach that we have taken in performing the safety analysis for the IAPR con-

cept.

SAFETY ANALYSIS: PERSPECTIVES

A thorough analysis of system safety must address the problem from a variety of

perspectives----each impacting safety in a different way. One perspective relates to

the operational environments or operational scenarios within which the system is

expected to function. Those environments or scenarios that, by their nature, pro-

vide opportunities for unsafe operating conditions have an impact on system

safety and approaches to modeling and understanding those impacts must be de-

veloped. Another perspective relates to the reliability and availability of the func-

tions performed by the hardware, software, and human components of the system.

Failures or degradation in the performance of elements of safety-critical system

components have an impact on safety, and models of the reliability of those ele-

ments must be developed in order to determine the impact on system safety. Fi-

nally, the rules and procedures under which a system operates can have a

significant impact on the system safety, and approaches must be developed to

analyze the impact of those rules and procedures on safety for all modes of opera-

tion of the system.

The three perspectives are illustrated in Figure 1-1 and can be simply summarized
as follows:

System element functionality. This entails an analysis of how well and re-

liably system elements work and the attendant impact on safety.

Rules and procedures. This involves analyses of how the system rules and

procedures have been designed to respond in both safe and unsafe situa-

tions.
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Operational scenario. This involves analysis of the environment in which

the system is expected to operate and its attendant impact on system

safety.

Figure 1-1. Perspectives of a System-Level Safety Analysis

APPROACHES TO EVALUATING SYSTEM SAFETY

A variety of approaches have been developed to address the three perspectives of

system safety analysis described in the preceding section. Some of those ap-

proaches are outlined below.

• Statistical analysis of existing systems (descriptive approaches).

These approaches are based on statistical analyses of data that are col-

lected over long periods of time. The work of Professor Arnold Barnett of

Massachusetts Institute Technology (MIT) is an example of this kind of ef-

fort. This class of approaches to safety analysis is "after the fact" and is

useful in identifying shortcomings in existing systems but has limited util-

ity in predicting the safety consequences of proposed system concepts.

Since our interest is in evaluation and analysis of the safety of new system

concepts, we will not dwell on these approaches.

• Analysis of candidate designs that model human, technical (hardware and

software), and procedural aspects of the system (predictive approaches).

"ility" analytical modeling.

Markov, semi-Markov, combinatorial, and fault tree models are used

to determine system reliability, availability, maintainability, etc. These

approaches have matured over time, and the Markov reliability mod-

eling approach is the one that we have chosen and that is elaborated

upon in succeeding chapters. Further discussion is included in Chap-
ter 2.
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Introduction

Simulation.

A variety of statistical event simulation approaches including discrete

event simulations, importance sampled Monte Carlo simulations, and

hybrid simulations with both human operators and hardware in the

loop have been used to predict the safety of proposed system concepts.

The advantage of simulations is that they are typically easier to design

and implement than the analytical models described in (a) above. The

disadvantage is that, in order to obtain statistically significant results

for very low probability events, many simulations must be performed.

The approach that we have taken in the IAPR study is to use a Markov

model to determine the probabilities of being in potentially unsafe

system states and to employ a deterministic simulation of the system

operating in those states. The system safety metrics generated by the

simulations are then weighted by the Markov state probabilities to ob-

tain the total expected values of those metrics. Further discussion of

simulation approaches is included in Chapter 2.

• Human performance modeling.

The development of models to predict the effect of workload and task

design on human error rates and human response times was considered

beyond the scope of the effort for this task. Indeed, good models of the

human are critical to the complete analysis of a system. Due to con-

straints on time and budget, we chose to use simple models of human

performance and to embed those in our system Markov models. Thus,

at the level of failure and performance degradation, the function of a

person is characterized no differently than that of other system compo-
nents.

• Formal methods.

These are mathematical, logic-based approaches for specifying and

implementing safety-critical hardware and software systems and for

verifying correctness and completeness of their design and implemen-

tation. Typical of these approaches are those taken by professor Nancy

Lynch at MIT and professor Nancy Leveson at the University of Ore-

gon. These approaches are best applied when the system is defined at a

higher level of detail than the IAPR concept that we are investigating.

• Information security.

For safety-critical information exchanges, for example Automatic De-

pendent Surveillance-Broadcast (ADS-B) for local air traffic status

between aircraft when air separation responsibility is transferred to pi-

lots, the security and integrity of the exchanged information are clearly
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critical.Oneway to view informationsecurityis in termsof protecting
thecomputersandcommunicationsassetsof thesystem.Thereare
severalprotectionmechanisms:protectionagainstunauthorizedaltera-
tionsof thedataandprotectionagainstdenialof exchangeof data.To
date,little hasbeendonein thedevelopmentof modelsof information
securityandits impacton safety-criticalfunctions.This is anareafor
researchandis not addressedfurtherhere.

OBJECTIVE: A UNIFIED FRAMEWORK

FOR INTEGRATED SAFETY ANALYSIS

How best can the many approaches to evaluating system safety be combined into a

unified framework for safety analysis? Drawing the three perspectives shown in

Figure 1-1 into a unifying framework that directly addresses the interactions and

coupling among those perspectives, our first step toward such a unification is de-

scribed below and has been applied in evaluating the IAPR concept. As time and

experience in applying this unified approach evolve, we anticipate further refine-
ments will be made.

The integrated safety analysis that we employ is distinguished by its ability to

merge system design or functionality information with a parameterization of a

system's situation. This is illustrated in Figure 1-2. The "system" may include

both air and ground subsystems within this analysis framework.

In Figure 1-1, we see that system safety is being addressed from a variety of per-

spectives, each of which impacts safety. These include

system functionality, the analysis of how reliably the system components

perform;

_I, rules and procedures, the analysis of how the system is designed to re-

spond in both safe and unsafe situations; and

operational scenario, the analysis of the environment in which the system

is expected to operate.

Integrating models that quantify each one of these three elements creates an analy-

sis capability that is now systemwide and responsive to ongoing changes in the

definition and requirements of the operational concept.

The steps leading from requirements derived for an operational concept to the de-

velopment of a reliability model of the system architecture that has been proposed

to meet those requirements are shown on the left side of Figure 1-2. This repre-

sents a traditional reliability/safety modeling process. On the right are the models

required to capture the environment in which the system is to operate as well as
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Introduction

the interaction of those environmental models with response models that represent

the execution of the rules and procedures that have been developed for the candi-

date concept. This represents a modeling process for the dynamic analysis of the

system' s situation.

Figure 1-2. Integrated Safety and Reliability Modeling and Evaluation
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Our approach to system safety analysis results from the integration of the Reli-

ability model and the Interaction-Response model. The Interaction-Response

model provides information regarding the frequency of encounters and the pre-

dicted outcome of those encounters as a function of the system' s alerting system

and ability to resolve encounters. The Reliability model provides, as a function of

time, probabilities associated with the critical systems' availability and failure

states. Scaling the operations safety metrics from the Interaction-Response model

by the system state probabilities from the Reliability model creates the system-

level safety statistics. This process is illustrated in Figure 1-3.
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Figure 1-3. Combining Model Outputs

Probability vector
from Reliability Model
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Performance metrics from
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• Correct detection
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• Reliable operation
• Collisions
• False alarms

Products of this analysis include

• predicted accident statistics,

• predicted false alarm statistics, and

• predicted system availability and reliability.

Moreover, as the operational concept evolves, the impact of changes in system

architecture, rules and procedures, and operational scenarios can be easily re-

evaluated with this methodology.
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Chapter 2

Overview of Analytical Reliability Modeling
Techniques

The analytic approaches to quantifying system reliability fall into three classes:

Monte Carlo simulations, combinatorial reliability models (see below), and

Markov modeling. The strengths and weaknesses of these three approaches are

briefly described in this section.

MONTE CARLO SIMULATIONS

Simulation [ 1, 2] can be used to determine reliability by generating failure and

repair events at times distributed according to the component failure and repair

rates. These simulations are repeated until statistically significant reliability meas-

ures are accumulated. A major strength of the simulation approach is its ability to

analyze very complicated repair and reconfiguration scenarios, with relatively lit-

tle knowledge required beyond a description of the system to be analyzed. How-

ever, a key difficulty of this method is that for highly reliable systems the failure

rate is so low that, in order to accumulate a statistically meaningful number of

events, a very large number of simulations must be run. While there are means

(collectively known as variance reduction techniques) of increasing the efficiency

of the basic method, the underlying difficulty remains a drawback.

COMBINATORIAL RELIABILITY MODELS

Combinatorial reliability models [3] have been widely used. Fault-tree analysis

[4], for example, has become a standard analytical method for reliability predic-

tion in a wide variety of applications. This analytical technique combines compo-

nent failure probabilities, based on the system architecture and redundancy

management approach, to determine system reliability. Since there is no explicit

simulation of system operation, the combinatorial technique avoids the deficien-

cies of the Monte Carlo simulation. There are, however, three limitations to this

approach. First, the fault tree is constructed to predict the probability of the system

being in a particular operating condition (for example, a working condition or a

failed condition). If it is desired to investigate the probability of being in other

conditions, such as a variety of different operating modes, then new fault trees

have to be constructed. Second, it is difficult to include events that have order de-

pendencies, such as repairs and explicit modeling of reconfiguration strategies.

Even in relatively simple systems, there often are subtle sequence dependencies.

Finally, the nature of the combinatorial analysis requires that all combinations of
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events for the entire time period must be included. For complex systems, this re-

sults in a complicated fault tree that is difficult to construct and validate.

MARKOV MODELING

Markov modeling techniques have been increasingly used for reliability prediction

[3, 5, 6]. These techniques have also been used successfully to aid in the design of

fault-tolerant systems [7, 8]. A Markov reliability model calculates the probability

of the system being in various states as a function of time. A state in the model

represents the system status with respect to component failures and the behavior

of the system's redundancy management strategy. Transitions from one state to

another occur at given transition rates, which reflect component failure and repair

rates and redundancy management performance. Each element in the model's state

vector represents the time-dependent probability of the system being in a specific

state. Since the Markov model traces the evolution of state probabilities based on

the transition rates mentioned above, it is not explicitly simulating the system and,

therefore, does not have the deficiencies associated with the Monte Carlo tech-

nique. The Markov model is cast into a system of differential equations. Sequence

dependencies, such as repairs and redundancy management decisions, are in-

cluded naturally. Furthermore, the differential nature of the model means that it is

not necessary to generate explicitly all possible combinations of events that can

occur over the entire time period in question; rather, it is only necessary to model

events that can occur during an infinitesimal time step. Of course, there are also

some drawbacks to this method. First, the state space grows exponentially with

the number of components. However, techniques have been developed to render

this problem tractable in many situations of interest [9]. Second, treatment of

complex mission scenarios and repair strategies, although possible, are generally

cumbersome.

It should be emphasized that the reliability of a system does not depend on the

analytical method used to evaluate it, so long as any approximations and simplifi-

cations are consistently applied or interpreted.
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Chapter 3

The Modeling Process

ROLE OF THE RELIABILITY MODEL

The objective of the reliability model is to predict the state of the aircraft capa-

bilities at the start of and during an independent approach. In general, when an

aircraft lines up for an independent approach, it will have been in-flight for sev-

eral hours. Assuming that the aircraft had no failures prior to takeoff, in the time

from takeoff until the start of the approach, failures of components within the

systems of the aircraft may have occurred that have reduced its capabilities. The

reduced capabilities, possibly undetected by the pilot, can affect the performance

of the aircraft during the approach and result in the aircraft drifting or blundering

into the path of an aircraft approaching the adjacent runway. Alternately, the com-

ponent failures during en route flight may prevent an independent approach from

taking place. Procedural rules may prohibit the pilot from attempting an inde-

pendent approach if there is a known loss of a specific aircraft capability or, in the

worst case, failures could cause the loss of the aircraft. The reliability model cal-

culates the probabilities of the reduced capabilities impacting the safety of the air-

craft when an independent approach is attempted.

The actual process of generating a reliability model requires information on ar-

chitecture, component characteristics, operational requirements, and reconfigura-

tion procedures. The system architecture provides information such as what

components exist and how they are connected, both physically and logically. The

model also needs to be fed various component characteristics, such as failure and

repair rates. The operational requirements provide a definition of what equipment

or abilities are needed to achieve an operational state. The reconfiguration proce-

dures are the actions taken when a failure occurs so that system operation remains
in the most desirable mode.

The process of generating a reliability model for a system can be divided into

three steps. First, the system needs to be carefully examined. The goal is to dis-

cover how the system operates and its critical elements. This step results in a sys-

tem description. Second, the impact of failures is explored. This step is often

called a failure modes and effects analysis (FMEA). During this step, the failure

modes of the system are delineated. Third, the Markov model is constructed. In-

formation on system operation from step one is used to guide modeling decisions

such as the proper representation for the human elements. The model is a system-

atic representation of the FMEA from step two. Each of these steps is discussed in

a subsection below.
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DEFINE AIRCRAFT FUNCTIONAL ELEMENTS

The f'Lrst step in developing the reliability model needed for the IAPR system

safety model is to define the aircraft functions that directly and uniquely impact

the inputs of the Interaction-Response model. The functions or capabilities of the

aircraft used in the IAPR system safety model are defined in Table 3-1. These

functions were developed by reviewing the current status of the development of

the Airborne Information for Lateral Spacing system (AILS). However, the func-

tion definitions and the system description of the IAPR system presented in the

next section are not strictly based on the AILS system. The function definitions

and the system description represent the capabilities and components, respec-

tively, which are likely to comprise an IAPR system, since a specification of an

AILS system does not yet exist.

Table 3-1. IAPR System Functional Elements

IAPR RNP

Element

ADS-B/surveillance data link

Collision-alerting avionics

Guidance and control

Description

The ability to perform conformance monitoring of an
aircraft's performance and adherence to its ap-
proach path (Required Navigation Performance, or
RNP)

The ability of an aircraft to broadcast, receive, and
process ADS-B information for situational aware-
ness, conflict avoidance, and airspace management

The ability of an aircraft's system to predict a prob-
able collision with another aircraft during approach
and landing and to provide timely and reliable alerts
so that the pilot can avoid the collision (this includes
alerting logic, processing, and display monitors)

The aggregate of all other aircraft capabilities (e.g.,
propulsion, flight control, engine control) and sup-
port subsystems exclusive of the previous three
functions

Pilot The capability of the pilot(s) to safely operate the
aircraft

The function definitions are limited to the capabilities of a single aircraft. The

IAPR system is an aircraft-based collision avoidance system, but there may be de-

pendencies on systems external to the aircraft that can affect safety. The depend-

encies with the aircraft that may be approaching the adjacent runway will be

accounted for because the same function definitions are applied to the adjacent

aircraft. The dependencies on systems exclusive of the two aircraft are not in-

cluded in the reliability model. These would include any monitoring and interac-

tion from the ground controller or interaction with other aircraft in the airport
area.
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The Modeling Process

The functions defined in Table 3-1 are the capabilities of the aircraft required for

an independent approach. The first three functions represent capabilities that need

to be added to present commercial aircraft to support IAPR. The fourth function,

guidance and control, represents all the capabilities and systems of the aircraft,

exclusive of those required for the first three functions, which can affect safety of

an independent approach. The fifth function isolates the capability the pilot (and

crew) provide in the safe operation of the aircraft.

DESCRIBE THE SYSTEM

The following system description defines the reliability characteristics of the

IAPR system. That is, the system description presented defines the individual

components that can fail, how they are interconnected, the redundancy of the

components and subsystem functions, and the redundancy management logic.

To demonstrate the safety analysis methodology, a low-fidelity description of a

plausible IAPR system has been created. A design for the IAPR system presently

does not exist. So, a system is created that provides the functionality expected for

an IAPR system and includes some degree of fault tolerance. The system descrip-

tion constructed is complex enough to demonstrate the application of the safety

analysis methodology, but simple enough so that minimal resources would be

needed to develop the reliability model. The low-fidelity model does not limit the

approach.

Each system component in the system description is assigned to only one function

to maintain the independence of the functions. The advantage of maintaining the

independence of the functions is that it enables the probability of any system state

to be computed in a simple and direct manner. For example, the probability of the

system beingfuUy operational, at some time t, is simply the product of the prob-

abilities of each of the functions being in their fully operational states at time t.

Figures 3-1 through 3-4 present the block diagrams for the system description.

These are discussed in the following subsections. However, to fully understand

the block diagrams, several conventions need to be defined.

Components shown with broken lines are assigned to another function.

They are included in the following block diagrams of some of the func-

tions to indicate the interconnection between the components of different

functions, and they are not considered one of the components necessary for
the function.

Overlapping blocks indicate dual-redundant components. Dual-redundant

components are both on-line if functional, but only one is necessary for the

function to be fully operational.
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4, The connections between components shown should be understood to in-

dicate that the connected components are fully cross-strapped. For exam-

ple, in Figure 3-1 the connection between the "navigation processors" and

the "navigation displays" (indicated by the arrow) means each of the two

navigation processors is connected to each of the navigation displays.

Figure 3-1. IAPR RNP
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J INS

To all components

requiring electrical power

Alternator
and PDU-1

Navigation
displays

Navigation
processor

To all components

requiring electrical power
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=................. •

Note: PDU-power distribution unit.

Figure 3-2. ADS-B/Surveillance Data Link
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The Modeling Process

Figure 3-3. Collision-Alerting Avionics
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Independent Approaches on Parallel Runways Required

Navigational Performance

Figure 3-1 presents the block diagram of the IAPR RNP system. The six compo-

nents shown framed with solid lines provide the IAPR RNP function defined in

Table 3-1. The Global Positioning System (GPS) receiver and Inertial Navigation

System (INS) provide the sensed position of the aircraft. The GPS receiver pro-

vides discrete position updates at fixed intervals in time. The INS data are inte-

grated with the position updates from the GPS receiver to provide a more frequent

position update than can be obtained with the GPS receiver alone. The data fusion

and the navigation computation are done in the navigation processor. The naviga-

tion displays provide the flight crews with the navigation information and alerts

when navigation containment is violated.

Table 3-2 presents the operational states of the IAPR RNP function that are perti-

nent to the IAPR safety model. The IAPR RNP system is fully operational if both

the GPS receiver and the INS 1 navigation processor and 1 navigation displays are

functional. The system is "degraded" if either the GPS or INS has failed, the fail-

ures are detected and compensated for, and an indication has been given to the

pilot by the system. The "failed safe" state is the state of the system when compo-

nent failures have caused the loss of the IAPR RNP navigation function and an

indication is provided to the pilot to evidence that this capability no longer is

available. Alternately, the "failed uncovered" state represents the loss of the func-

tion, but an indication is not provided to the pilot to indicate the loss of that func-
tion.
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Table 3-2. IAPR RNP Navigation Operational States

State Definition Impact

Fully operational TSE (total system error) is less Navigation capability available for
than containment limit and no normal approach; ideal distributions
alert of loss of RNP capability

Degraded Loss of either GPS or INS result- Navigation capability available for
ing in a degraded navigation ca- normal approach; nonideal
pability distributions

Failed safe Alert of loss of RNP capability No longer able to perform independ-
ent approaches; approach aborted

Failed uncovered TSE is greater than containment Invalid self-knowledge and
limit and no alert of loss of RNP broadcast of navigation data
capability

ADS-B/Surveillance Data Link

Figure 3-2 shows the block diagram of the ADS-B/surveillance data link system.

The ADS-B/surveillance data link system transmits the IAPR state variable data

for the aircraft (which the aircraft performing an independent approach on the ad-

jacent runway can monitor) and receives the IAPR state variable data from the

adjacent aircraft. The IAPR state variable data broadcast from the aircraft enables

the collision alerting avionics of other aircraft to predict a collision. Conversely,
the IAPR state variable data the aircraft receives from other aircraft enables it to

predict a collision with those aircraft. The Attitude Heading Reference System

(AHRS), GPS receiver, and INS provide the sensor data that make up the IAPR

state variable data. However, these three sensors provide redundant information

and sufficient data are available if two of the three are functional. (Note that the

GPS receiver and the INS are not included in the ADS-B/surveillance data link

function, having already been included in the IAPR RNP navigation function.)

For the ADS-B/surveillance data link function to be fully operational, 1 ADS-B

processor, 1 ADS-B displays, the modulator and transmitter, the receiver and de-

modulator, and the antenna must be functional. The degraded, failed safe, and

failed uncovered states are defined in Table 3-3.
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The Modeling Process

Table 3-3. ADS-B/Surveillance Data Link Operational States

State Definition Impact

Fully operational Valid broadcast and reception of Transmit and receive functions are
broadcasts from other aircraft fully available

Degraded

Failed safe

Unable to receive broadcasts
from other aircraft and may or
may not receive alert of capability
loss; broadcast capability func-

! tioning

Invalid broadcast and alert of ca-
pability loss and, possibly also,
loss of reception capability of
broadcasts from other aircraft

Knowledge of other aircraft is in-
valid but approach is allowed

No longer able to perform inde-
pendent approaches; approach
aborted

Failed uncovered Invalid broadcast and no alert of Other aircraft do not receive valid
capability loss surveillance data

Collision-Alerting Avionics

The collision-alerting avionics block diagram and operational states are shown in

Figure 3-3 and Table 3-4, respectively. The collision alerting avionics is fully op-

erational if 1 alerting processor and 1 alerting displays are functional. The alerting

processor receives the position of its own aircraft from the IAPR RNP function

and the IAPR state variable data from the aircraft approaching on the adjacent

runway from the ADS-B/surveillance data link system.

Table 3-4. Collision-Alerting Avionics Operational States

State Definition Impact

Fully operational Collision-alerting capability func- Alerting-capability available for
tioning properly normal approach

Failed safe Collision-alerting not available No longer able to perform inde-
and alert of capability loss pendent approaches; approach

aborted

Failed uncovered Collision-alerting not available Unable to detect blunders of other
and no alert of capability loss aircraft but approach is not aborted

Guidance and Control and Pilot

Figure 3-4 shows the block diagram of the Guidance and Control and Pilot sys-

tems. The pilot and crew are included here as the block denoted "Pilot." The

Guidance and Control system simply represents all of the systems of the aircraft

exclusive of the IAPR RNP, ADS-B/surveillance data link, and Collision-Alerting

Avionics systems that all impact safety. The pilot provides inputs to engine and
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flight controlto ultimatelydirectthethrustandflight pathof theaircraft.Propul-
sionis providedvia theengines.Enginecontrolis providedby theengineproces-
sorusinginput from thepilot andenginesensors.Flight controlis throughthe
controlprocessor,which movesthecontrolsurfacesbasedon inputsfrom thepi-
lots andaircraftstateandenvironmentsensors.ThealternatorandPDUsgenerate
anddistributeelectricalpowerto all componentsrequiringit.

Figure 3-4. Guidance and Control and Pilot Systems

Engine _ I Engine

sensors MS proceiso r

, i,otI,,
\

Aircraft state

and envi;onm ent processor j_ I

To all components

requiring electrical power

Engine-1I Vl

Engine-2

Alte rn ato r

and PDU-1

Alternator

and PDU-2

To all components

requiring electrical power

Control __]surfaces

Table 3-5 presents the operational states of the guidance and control function. The

guidance and control system is fully operational if I engine sensors, 1 aircraft

state and environmental sensors, 1 engine processor, 1 control processor, 1 guid-

ance and control displays, both engines, 1 control surfaces, and 1 alternator and
PDU are functional. The failed safe state would result from the covered failure of

1 engine. Any uncovered failures or covered failures that result in the system not

satisfying the definition of fully operational would place the guidance and control
function in the failed uncovered state.

Table 3-5. Guidance and Control Operational States

State Definition Impact

Fully operational All other capabilities and support Capability is fully available for nor-
subsystems operational mal approach

Failed safe Loss of sufficient capability and No longer able to perform inde-
knowledge of loss pendent approaches; approach

aborted

Failed-uncovered Loss of sufficient capability and Worst-case blunder
no knowledge of loss or inability
to control aircraft
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Table 3-6 presents the operational states of the pilot function. The pilot function is

meant to capture the effect of human error in the safety of an independent ap-

proach. While an actual model of the reliability of the human in control of the air-

craft is beyond the level of work being presented here, the pilot function can still

be broken down into operational states to demonstrate how the reliability of the

human is integrated into the safety analysis methodology.

Table 3-6. Pilot Operational States

State Definition Impact

Fully operational

Recoverable fault

Nonrecoverable fault

Pilot functioning nominally with-
out any faults
Pilot fault has occurred; is pos-
sible to recover from fault

Pilot fault has occurred; is not
possible to recover from fault

Alerting capability available for
normal approach

No impact prior to approach; air-
craft blunder after start of ap-
proach

No impact prior to approach; air-
craft blunder after start of ap-
proach

BUILD A MARKOV MODEL

A set of Markov reliability models are constructed from the system described ear-

lier in the system description section. The Markov models are developed in accor-

dance with the techniques presented in Chapter 4. A separate model is constructed
for each function defined in Table 3-1.

RESULTS AND DISCUSSION

Markov reliability models are used to calculate the probabilities of being in the

operational states of each of the functions. Table 3-7 presents the baseline failure

rates and coverage probabilities for each of the components identified in the sys-

tem description for the IAPR system. The failure rates and coverage probabilities

constitute nearly all of the input parameters for the models. The only missing in-

put parameter is recovery rate from an intermittent human failure for the Pilot

model. The baseline value for this rate is set at 3.6x10 2 recoveries/hour.

Table 3-7. Baseline Failure Rates and Coverage Probabilities

Component Failure rate (failures/hour)

IAPR RNP

Coverage probability

GPS

INS

Navigation displays

Navigation processor

3.0E-5

1.0E-4

2.0E-5

1.0E-5

0.99

0.99

0.999, 0.99

0.99, 0.95
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Table 3-7. Baseline Failure Rates and Coverage Probabilities (Cont.)

I I

Component I Failurerate (failures/hour) I Coverageprobability
m

ADS-B/Surveillance Data Link

AHRS

ADS-B displays
ADS-B processor
Modulator and transmitter

Receiver and demodulator
Antenna

1.0E-5

2.0E-5
1.0E-5
5.0E-5

5.0E-5
1.0E-6

0.99

0.999, 0.99
0.99, 0.95

0.99
0.99

1.00

Alerting displays

Alerting processor

Collision-alerting logic
2.0E-5

1.0E-5

Guidance and control

Engine sensors
Engine processor

Engine
Alternator and PDU

Guidance and control displays
State and environment sensors

Control processor
Control surfaces

4.0E-5
1.0E-5
1.0E-5

2.0E-5
2.0E-5
4.0E-5
1.0E-5
5.0E-6

0.99

0.99
0.999
0.99

0.999
0.99
0.99
0.99

Pilot

Intermittent human failure 1.0E-4 1.00

Permanent human failure 1.0E-6 1.00

Note: Forcoverage probabilitiesentered as two numbers,the first numberis the coverage
probabilityoffirst failure inredundantcomponents,andthe secondnumberisfor secondfailure in
the redundantcomponents.

The input parameters used are not from any specific source and are selected with

the intent of highlighting the fidelity of the Markov reliability models. Typical

values of failure rates and coverage probabilities are assigned for the components

that are likely to comprise the system. The failure and recovery rates for the pilot

model are not based on any empirical data.

Table 3-8 shows the calculated probabilities for the operational states of each

function. The Markov models are evaluated using Version 7.9.8 of the SURE Re-

liability Analysis program developed by NASA Langley Research Center [12].

The Markov model state probabilities are calculated for 4 and 10 hours. These

represent two time intervals from aircraft takeoff to the lineup point for an inde-

pendent approach.
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Table 3-8. Probabilities of Operational States

Probability of being operational state

At 4 hours At 10 hours

Operational state

IAPR RNP

Lower Upper
bound bound

Lower Upper
bound bound

Fully operational

Degraded

Failed safe

Failed uncovered

9.9948 E- 1 9.9948 E- 1

5.15E-4 5.15E-4

5.49E-8 5.49E-8

6.16E-6 6.16E-6

ADS-B/surveillance data link

9.9870E-1

1.29E-3

3.43E-7

1.54E-5

9.9870E-1

1.29E-3

3.43E-7

1.54E-5

Fully operational

Degraded

Failed safe

Failed uncovered

9.9959E-1

2.00E-4

2.02E-4

2.96E-6

9.9960E-1

2.00E-4

2.02E-4

2.96E-6

9.9899E-1

5.00E-4

5.05E-4

7.40E-6

9.9899E-1

5.00E-4

5.05E-4

7.41E-6

Collision-alerting logic

Fully operational 1.0000E+0 1.0000E+0 1.0000E+0 1.0000E+0

Failed safe 7.83E-9 7.83E-9 4.90E-8 4.90E-8

Failed uncovered 9.60E-7 9.60E-7 2.40E-6 2.40E-6

Guidance and control

Fully operational 9.9991E-1 9.9991 E-1 9.9977E-1 9.9978E-1

Failed safe 7.99E-5 8.00E-5 2.00E-4 2.00E-4

Failed uncovered 1.03E-5 1.03E-5 2.60E-5 2.61E-5

Pilot

Fully operational

Recoverable failure

Nonrecoverable failure

1.0000E+0

2.78E-7

4.00E-6

1.0000E+0

3.59E-7

4.00E-6

9.9999E-1

2.78E-7

1.00E-5

9.9999E-1

7.83E-7

1.00E-5

Note that the results in Table 3-8 are presented as bounds on the probabilities of

being in the states of each function. The bounds occur from two sources. The first

source, which affects all of the models, is that the SURE program calculates and

outputs the bounds of the probability of being in the states of the model

(numerical approximation error). The second source, which affects just the ADS-

B/surveillance data link and guidance and control Markov models, is the model

truncation aggregation technique used to limit the size of these models. Model

truncation introduces some uncertainty into the predictions [11].

The probabilities shown in Table 3-8 are used by the Impact Model discussed in

Chapter 4. However, there are some system probabilities produced by the Markov

reliability models that are also of interest. Some component failures occurring be-

fore the approach lineup can preclude an independent approach. Table 3-9 pres-
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ents two metrics of interest. The first is the probability that insufficient capability

is available to attempt an independent approach and the approach is aborted by the

pilot. This is the probability that one or more of the functions, excluding the Pilot

function, is in its failed safe operational state. The second metric is the probability

of a loss of the aircraft before the approach lineup. This is the probability of being

in the failed uncovered operational state of the guidance and control function.

Table 3-9. Probabilities of Other Operational States

Metric

Insufficient capability
independent approach

Loss of aircraft before
approach lineup

Probability

Upper bound at 4 hours

2.82E-4

1.03E-5

Upper bound at 10 hours

7.06E-4

2.61E-5
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Chapter 4

Markov Modeling Method

BACKGROUND

Markov modeling techniques provide a systematic means of investigating system

reliability for large, complex systems. They permit the inclusion of sequence-

dependent events, such as repairs, in a natural fashion. One of the most powerful

aspects of Markov models is their ability to permit simplifying approximations to

be made and to provide means to obtain bounds on these approximations. The ba-

sic concepts of Markov modeling are introduced via simple, but representative

examples. These examples clearly point out the general flexibility as well as the

main drawback of the technique, particularly the rapidly proliferating state space.

SINGLE-COMPONENT SYSTEM

Figure 4-1 shows a single-component system. The first step in modeling the reli-

ability of that system is to determine what is required for the system to be in an

operational state. That single-component system has a trivial operational require-

ment: it is operational if the single component, A, has not failed. (Conversely, the

system is failed if component A has failed). While this step is simple for that sys-

tem, it is often one of the most complicated steps in modeling a complex system,

characterized by many operational states and subtle interactions among compo-
nents.

Figure 4-1. Single-Component System Block Diagram

Given the system operational requirements, the next step is to construct Markov

model states. A state represents a unique configuration of failed and operational

elements, sometimes distinguished by the sequence of the failures that led to it.

Figure 4-2 shows the Markov model for the one-element system. In general, a

model is generated by first creating state 1, the state where there are no failed

components in the system. The various transitions out of state 1 represent failures

of the system components, accounted for individually or in groups. In this case,

there is only one component; thus, a transition denoted _, is created leading to

state 2. This state represents this system when component A is failed. Noting the

operational requirements for this system, state 2 is labeled as a system failure.
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Since there is only one component in the system and its failure has been accounted

for, the Markov model is complete.

Figure 4-2. Single-Component System Markov Model

OF 1F

This system's reliability is just the probability, as a function of time, of being in

state 1. Actually, there is a probability associated with each state. For example, at

time zero the probability of being in state 1 (no failures) is 1 (or 100 percent) and

the probability of being in state 2, or any other state, is 0. Parameter _, on the tran-

sition in the model not only indicates that component A has failed along this tran-

sition, but that the component's failure rate is _, failures per hour. Throughout this

discussion, it will be assumed that all failure rates are constant in time. To obtain

the system reliability as well as other state probabilities of interest as a function of

time, the probability "flowing" out of state 1 into state 2 needs to be tracked.

Probability flow is the product of the transition rate and the state probability for

the state at the origin of the transition. Thus, a state with zero probability has no

probability flowing out of it, a state with no exiting transitions has no flow out,

and a state with probability equal to 1 and an exiting transition rate of K has an

instantaneous flow out equal to _,. The rate of change of each probability is then

given by the net probability flow into the corresponding state. Therefore, a

Markov model is thus mathematically described by a set of differential equations

governing the evolution in time of the probabilities of being in each state.

Using the definition of the probability flows, the following equations are obtained

for the Markov model shown in Figure 4-2:

dP 1(t)ldt =- _, P1 (t) [Eq. 4-1]

dP2(t)ldt = _, PI (t) [Eq. 4-2]

These equations, representing the rate of changes in each state variable (P1 and

P2), are called state equations. Equation 4-1 shows that the rate of change in prob-

ability for state 1 is the exiting transition rate _, times the probability of being in

state 1. The minus sign indicates that the transition is out of the state and, there-

fore, reduces the probability of being in state 1. Equation 4-2 is interpreted simi-

larly. Note that the flow is into state 2; the positive term indicates an entering

transition that increases the probability in state 2. Also, the flow into state 2 is the
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Markov Modeling Method

rate _ times the probability of state 1; the flow on this transition is due to state 1,

the origin of the transition. Equations 4-1 and 4-2, along with the initial condition

of the state probabilities, P1 (0) = 1 and P2(0) = 0, provide a complete description

of the system's reliability. Markov models have the property that a flow leaving

one state enters another, as shown in Equations 4-1 and 4-2. Hence, the total sys-

tem probability does not change as the system evolves. This fundamental property

is called conservation of probability. The sum of all the system's state probabili-

ties is always equal to 1.

There are many ways of solving Equations 4-1 and 4-2 in closed form, such as

standard integration or Laplace transform. Using any convenient technique and

recalling that the failure rate _, is constant, yields the following solution:

P1 (t) = e-Xt [Eq. 4-3]

P2(t) = 1 - e-kt [Eq. 4-41

State 1 starts with a probability of 1 and decays exponentially toward 0, while

state 2 has a probability initially at 0 that grows toward 1. Notice that the sum of

the two state probabilities is 1 at all times, thus indicating the conservation of

probability.

TWo-COMPONENT PARALLEL SYSTEM

Figure 4-3 shows a two-component system in which the components are con-

nected in parallel. The requirement for system operation is that at least one of the

two components is working.

Figure 4-3. Two-Component Parallel System Block Diagram
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A Markovmodelof this systemis shownin Figure4-4. Noticethatstates4 and5
distinguishbetweenthetwo possibleordersof componentfailure leadingto a
systemloss.Thenatureof theMarkov modelmakessuchorderdependencieseasy
to include.Thestateequationsfor thissystemare

dPl(t)/dt = - (_'A + _'B) PI(t)

dP2(t)ldt = _'A PI (t) - _'B P2(t)

dP3(t)/dt = ;LBP1 (t) - _'A P3(t) [Eq. 4-5]

dP4(t)ldt = _'B P2(t)

dPs(t)ldt = _'A P3(t)

Figure 4-4. Two-Component Parallel System Markov Model

OF 1F

B failed

2F

A, then B failed

-<S)
B, then A failed

For constant failure rates and an initial condition of

P(O) = [1 O, 0 0 O]t,

the solution is

Pl(t) = e-(hA + _)t

P2(t) = e-kBt - e-(_A + kl_)t

P3(t) = e-hAt - e-(hA + _)t

P4(t) = [_a + kB(e-( hA + )_)t) - ()_A + )_B)(e-_t]l(kA + _'B)

P5(t) = [_'B + )_A(e-( hA + _)t) - (_,A + _'B)(e-hAt]l()_A + kB)

As expected, Pl(t), P2(t), and P3(t) have final values of 0 and the sum of the f'mal

values of Pa(t) and Ps(t) is 1.

[F-zl. 4-6]
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Two-COMPONENT PARALLEL SYSTEM WITH

IMPERFECT COVERAGE

The architecture of a two-component parallel system (Figure 4-3) will be used

again. In this example, imperfect coverage is added to the description of the sys-

tem's operation. Coverage is the ability to successfully recover from a component

failure. Coverage for a specific component is represented as the fraction of that

component's failures that can be detected and successfully recovered from.

If the system starts out using component A and a covered failure occurs, then the

system reconfigures to rely on component B. Any subsequent failure of B results

in a system failure. If the system is in component A, and there is a failure in com-

ponent B, then a system loss will result when A fails, since there are no operating

components left. If the system is using component A and it suffers an uncovered

failure, by definition the system does not successfully recover, so a system loss

results. This situation is shown in the Markov model in Figure 4-5.

Figure 4-5. Parallel System Markov Model with Imperfect Coverage

OF IF 2F

A and B OK

A failed, detected A, then B failed

--(53
(l-c) B failed B, then A failed

A failed, undetected

States 4, 5, and 6 represent system failure states, and states 2 and 3 represent sys-

tem operation states where one component is failed. The coverage parameter is c.

The transition into state 2 represents the covered failure of component A while the

transition into state 4 represents the uncovered failure of component A. The state

equations for this Markov model are

dPl(t)/dt =- (kA + kB) PI(t)

dP2(t)/dt = c_, A Pl(t) - lB P2(t)

dP3(t)/dt = _'B P1 (t) - _'A P3(t) [Eq. 4-7]

dP4(t)/dt = (1- c)_, A Pl(t)

4-5



dP5(t)/dt = _,B P2(t)

dP6(t)/dt = _'A P3(t)

If _A, _,B, and c are constant in time and the initial condition is

P(O) = [1 0 O, 0 0 O]t,

then the solution is

Pl(t) = e-(L4 + _,n)t

P2(t) = c[e-_t - e-(L4 + Ls)t]

P3(t) = e-_,At - e-()_.4 + )_B)t [Eq.4-81

P4(t) = (1- c)_, A [1- e-(La + )dOt]l(_, A + _,B)

P5(t) = c[)_A + )_B(e-()_a + )_B)t - (_'A + )_B) e-)d_t]lO_A + )_B)

P6(t) = [)_B + )_A(e-( La + ;klOt - ()_A + ;_B) e-XAt]I(_A + _B)

Notice that including the effects of imperfect coverage, some of which are se-

quential in nature, is straightforward in Markov models. The coverage values may

come from engineering experience or may be the result of Markov models that

examine the fault detection, identification, and reconfiguration process used to

obtain coverage. While a system is still in the design stage, coverage values are

often taken as constants. As the design progresses, it may be possible to refine the

coverage values through modeling. The issue of coverage modeling is discussed

further in reference [10].

Two-COMPONENT PARALLEL SYSTEM WITH REPAIRS

Once again, the architecture of a two-component parallel system (Figure 4-3) will

be used. In this example, repairs are added to the description of the system's op-

eration. Hence, there are transitions from this state to states at higher failure levels

representing failure events, and there are transitions back to lower failure levels

representing the repair of components. It is assumed that there are two repairmen

in this system. This enables the repair of two components at their respective repair

rates at the second failure level. Other repair strategies could also be modeled.

Notice that repairs are a highly order-dependent phenomenon: a failure must occur

before a repair can be performed.
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This systemis shownin theMarkovmodelin Figure4-6.Thefailurerates_'Aand
_'Bandtherepairratesare}.tA and ktB. The state equations are formed as before;

the change in state probability is equal to the flows into and out of that state:

dPl(t)/dt = - (_'A + kB) PI(t) + ktA P2(t) + _tB P3(t)

dP2(t)/dt = _'A Pl(t) - (IrA + _'B) P2(t) + lab P4(t) + _tB P5(t)

dP3(t)ldt = _'B Pl(t) - (_A + [tB) P3(t) + I-tA P4(t) + ktA P5(t)

dP4(t)/dt = _'B P2(t) - (_tA + ktB) P4(t)

dP5(t)ldt = _A P3(t) - (_tA + ktB) P5(t)

Figure 4-6. Parallel System Markov Model with Repairs

[Eq. 4-91

0__._FF 1F 2F
Z.B

_ failed

A and B OK }.tB

B failed _tA B, then A failed

If the initial condition is

P(O) = [1 O, 0 0 O]T

and if all transition rates are constant in time, then a closed form solution can be

found. However, the form of this solution is quite complex. For systems with this

level of complexity, numerical integration solutions are easier and less expensive

to obtain than closed-form analytical solutions.

A key point to notice is that constant repair rates were used. As is true for constant

failure rates, these imply that the repair times are exponentially distributed in time

with a mean time equal to the inverse of the repair rate. During a system design,

this approximation may be adequate. As the design progresses, more information

may be available to refine the repair distribution. These other distributions will

result in time-varying repair rates, which the numerical solution of the Markov

model can easily handle.
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STATE SPACE-REDUCTION TECHNIQUES

FOR MARKOV MODELS

The Need for State Space Reduction

When real-world fault-tolerant systems are analyzed, the state space is so large

that some form of state space reduction is needed to make the analysis tractable.

Consider a system with 20 components. Furthermore, assume that the order of

component failure does not impact the system performance. Hence, each state is

unique in that a specific list of components is failed; the order of these failures is

not unique.

At the zero failure level there is one state--no components have failed. At the first

failure level, there are 20 states representing the single failure of each of the

20 components. Each state at the first failure level has 19 exit transitions repre-

senting the failure of the remaining 19 components. Therefore, at the second fail-

ure level, there are potentially 20x19 states. Removing the pairs that have the

same 2 components failed, but in different orders, eliminates haft of the states.

Thus, at the second failure level, there are 190 states describing the 190 combina-

tions of dual failures (20x19/2!). This pattern continues with 1,140 states at the

third failure level (20x19xl 8/3 !), 4,845 states at the fourth failure level

(20x19x18x17/4!), out to the 20th failure level where there is one state repre-

senting all components failed. The total number of states is about 106 .

Although 20 components is not a very large system to analyze, some form of state

space reduction is needed. Notice that the size of the state space grows exponen-

tially with the number of components in the system. For example, a three-

component system has 8 states, a four-component system has 16 states, a five-

component system has 32 states, etc. In general, a system with n components has

2 n states if failure order is irrelevant.

It is clear that this problem of state space size explosion is a serious limitation on

Markov models. In the following subsections, methods for controlling the size of

the state space are discussed. One method of reducing the state space, mentioned

in an earlier section, the detailed processes of fault detection, identification, and

reconflguration are not explicitly modeled, but rather, a single parameter, the cov-

erage value c, is used to capture the performance of the fault-handling process.

This behavioral decomposition [11] reduces the number of states by capturing the

consequences of failures, namely the system recovers or does not, and relegates

the details of this operation to a separate fault-handling model. In the following

subsections, two other techniques for controlling the state space size are dis-

cussed.

4-8



Exact State Aggregation

In order to control the state space size of a Markov model, exact state aggregation

is introduced. This technique aggregates two states at a common failure level into

a single state. If certain conditions are met on the two states' exit transitions, then

there are no approximations introduced in the aggregation.

Figure 4-7 shows a piece of a Markov model. The consequences of aggregating

states 3 and 4 into one state at the n th failure level are examined. Although there

may be more transitions (indicated by dashed lines) into and out of states 1, 2, 5,

and 6 at failure levels (n-l) and (n+l), respectively, they will not impact the ag-

gregation since they do not interact directly with the states to be aggregated. How-

ever, all transitions into and out of the two states to be aggregated are depicted in

this figure. This example easily extends to situations where there are more enter-

ing and exiting transitions for the states to be aggregated. The state equations for

the model in Figure 4-7 are shown with the extraneous transitions to and from

states 1, 2, 5, and 6 omitted

dP 1(t)/dt = - (a + b) P1 (t)

dP2(t)/dt = - (c + d) P2(t)

dP3(t)/dt = a Pl(t) + c P2(t) - (w + x) P3(t) [Eq. 4-101

dP4(t)/dt = b Pl(t) + d P2(t) - (y + z) P4(t)

dP5(t)ldt = w P3(t) + y P4(t)

dP6(t)/dt = x P3(t) + z P4(t)

Figure 4-7. System Before Aggregation

(n-1)F nF (n+l)F

Figure 4-8 shows the same portion of the Markov model but the two states at the

n th failure level have been aggregated into one state (state a.3). States in the ag-

gregated model are denoted with an "a" in their designations. The state equations
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for theaggregatedsystem,onceagainignoringtheextraneoustransitionsat the
(n-l) and(n+l) failure levelsare:

dPa. 1(t)/dt =- o_Pa.1 (t)

dPa.2(t)/dt =- _ Pa.2(t)

dPa.3(t)/dt = oc P_l(t) + _i Pa.E(t) - ('_ + 5) Pa.3(t) [Eq. 4-11]

dPa.5(t)/dt = ), Pa.3(t)

dPa.6(t)/dt = _ Pa.3(t)

Figure 4-8. System After Aggregation

(n-1)F nF (n+l)F

....... _ ...... t_-

The goal is to determine what the transition rates in the aggregated model, 0_, _, y,

and _ are. To do this, the following state probabilities are set equal:

• Pl(t) = Pa.l(t)

• P2(t) = Pa.2(t)

• Pa(t) + P4(t) = Pa.3(t)

• P5(t) = Pa.5(t)

• P6(t) = Pa.6(t).

These equalities lead directly to the equality of the differentials:

• dP 1(t)ldt = dPa. 1(t)/dt

• dP2(t)ldt = dPa.2(t)ldt

• dP3(t)/dt + dP4(t)/dt = dPa.3(t)/dt

4-10



Markov Modeling Method

* dP5(t)/dt = dPa.5(t)/dt

* dP6(t)/dt = dPa.6(t)ldt.

In other words, all states have a one-to-one correspondence in the two models ex-

cept states 3 and 4, which are aggregated into state a.3.

Applying the equalities for the differentials for states 1, 2, 5, and 6 (Equa-

tion 4-10) and their corresponding states in the aggregated model (Equation 4-11)

gives the following:

• (statel) 0_=a+b

• (state 2) _=c+d

• (state 5) y = [w P3(t) + y P4(t)]/[P3(t) + P4(t)]

• (state 6) 8 = [x P3(t) + z P4(t)]l[P3(t) + P4(t)]

These equations also satisfy the equalities for the aggregated state a.3. The equa-

tions for 0_and 13make intuitive sense: the transition rate into the aggregated state

a.3 is the sum of the rates into 3 and 4 since state a.3 is the combination of states 3

and 4. The transition rates y and 8 are slightly more complex.

The flows (i.e., differentials) in the unaggregated and aggregated models must be

the same. Flows are the product of transition rates and the probability of the state

at the origin of the transition. Hence, the transition rate leaving the aggregated

state a.3, going to state a.5, must be the sum of the flows leaving states 3 and 4,

going to state 5, divided by the probability of being in state a.3 (which equals the

sum of states 3 and 4's probability). In other words, the exit transition from an

aggregated state is a "mix" of the unaggregated states' exit transitions. Notice that

in general, the aggregated system's exit rates y and 8 are time varying functions

even though the unaggregated system's rates w, x, y, and z may be time invariant.

To perform an exact state aggregation consider a special case of the above system.

If w = y and x = z, then

• y=w=y

• _:X=Z.

Performing aggregations in this case gives time-invariant transition rates in the

aggregated model if the unaggregated model also has time invariant rates. This

special case is considered exact since no approximations are introduced and the

aggregated transition rates can be found by inspection: rates into the aggregated

state are the sum of the rates into the unaggregated states, and the exit rates for the
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aggregatedstatearethesameasthoseto eachdestinationasfrom theunaggre-
gatedstates.Noticethat asufficient conditionfor exactaggregationis thatthetwo
statesto beaggregatedmustbeatthe samefailure level andhaveidenticaltransi-
tion rateswith oneanotherto eachof their destinations.This aggregationapplies
for anyinitial conditionson theunaggregatedstates.

Two examplesarenow presentedto showthetechniqueof exactstateaggrega-
tion.First, return to theparallelsystemwith imperfectcoverageof Figure4-5.
States5 and6 areat acommonfailure level andhaveidenticalexit transitions
(theybothhavenoexit transitions).Hence,thesetwo statescanbeaggregated.
Theresultingmodelis shownin Figure4-9.Thestateequationsare

dPl(t)ldt =- (_'A + _'B) PI(t)

dP2(t)ldt = C_A PI(t) - kB P2(t)

dP3(t)/dt = _'B Pl(t) - _'A P3(t) [Eq. 4-12]

dP4(t)ldt = (1 - c)_, A Pl(t)

dP5(t)ldt = _'B P2(t) + _'A P3(t)

Figure 4-9. Aggregated Parallel System with Imperfect Coverage

OF I__F_F

C_.A _ _'B

A Failed_tected

( 1 - c)_,_

A Failed, undetected

If _'A, _'B, and c are constant in time and the initial condition is

2_EF

A and B Failed

then the solution is:

e(0)= [10,000] t,

Pl(t) = e-()_,a + _k/_)t

P2(t) = c[e-Kl_t - e-(XA + X/0t]
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P3(t) = e-L4t - e-0,A + _)t [Eq. 4-13]

P4(t) = (1- c)_,A [1- e-(L4 + Es)t]/O_A + Z,B)

P5(t) = [C_'A + _'B + (_'A + C_'B) e-(_t + _LB)t - O_A + _'B) e-_t - c(_, A + _'B) e-

_t]

/(_'A + _'B)

Comparing this solution with that of the unaggregated case (Equation 4-8) shows

the result to be identical, except that the aggregated state 5 is the sum of the unag-

gregated states 5 and 6.

As a second example, consider the parallel system with repairs (Figure 4-6).

States 4 and 5 have identical exit transition rates to each of their destinations; both

have rate I.tA going to state 3 and rate t.tB going to state 2. Hence, states 4 and 5

can be aggregated. The resulting model is shown in Figure 4-10 and the state

equations are as follows:

dPl(t)/dt =- (_'A + _'B) PI(t) + P'A P2(t) + BB P3(t)

dP2(t)ldt = _'A Pl(t) - (lAa + _'B) P2(t) + lABP4(t) [Eq. 4-14]

dP3(t)/dt = _.B Pl(t) - (Z,A+ lAn) P3(t) + ktA P4(t)

dPa(t)/dt = _'B P2(t) + _'A P3(t) - (_tA + lAB) P4(t)

Figure 4-10. Aggregated Parallel System Markov Model with Repairs

O___FF 1 F 2____EF

A and B OK _B 12A A and B failed

B failed

As was the case before the aggregation was performed, these equations are quite

complex to solve in closed form. A numerical solution shows correspondence

between the unaggregated and aggregated solutions.

Notice that the process of state aggregation reduces the level of detail of the

model. What were two unique states are now mixed together as one. As long as

the states to be aggregated share common characteristics that are of interest to the
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modeler, such as common operating modes, this loss of detail is usually not criti-

cal.

Model Truncation

Another method of controlling the size of the state space is model truncation. Fre-

quently, in highly reliable systems, the probability of system failure caused by

many components being failed is much less likely than system failures caused by a

few specific component failures. Hence, only the most probable failure sequences

impact the solution and only these sequences need to be modeled in detail. Al-

though the accuracy of the solution is impacted by the unmodeled failure se-

quences, bounds on the solution's accuracy will be directly obtained.

Figure 4-11 shows a Markov model that has been truncated at the no failure level.

Thus, any configuration with n or more failures is called a system failure and all

of these states are lumped into the state SF(n). Clearly, this will lead to an overes-

timate of the system failure probability for the n th and greater failure levels since

some of these configurations are operational. Therefore, the state SF(n) will be

used in establishing an upper bound on the system failure probability.

Figure 4-11. Truncated Markov Model

(n-2)F (n-1)F nF

C:G.ee  K:9 a K:9

States SF(n-1) and SF(n-2) are the contributions to the system failure probability

at the (n-l) and (n-2) failure levels, respectively. The "e" notation on the transi-

tions leading to states at the (n-1) failure level indicate that these should be exact
transitions. This results in an exact flow into states at the (n-l) failure level. Thus,

the probability of the system failure state SF(n-1) is exact. The "a" transition en-

tering the failure state at the no failure level may be an approximation that is

greater than, or equal to, the actual transition rate. This results in a larger prob-

ability flowing into state SF(n) than would be seen in an exact model. This, in ad-

dition to the assumption that all n and greater failure configurations cause a

system failure, ensures that state SF(n) contains a higher probability than exists in

an exact model.
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The sum of all failure state probabilities up to and including state SF(n-1) pro-

vides a lower bound on the system failure probability. This is valid since these

states have probabilities equal to the exact case, and the failure contributions at

failure levels n and greater have not been included. The upper bound is obtained

by adding system failure state SF(n) to the lower bound probability. This provides

an upper bound since flows into state SF(n) are equal to, or greater than, those in

an exact model and it is an overestimate of the true system failure probability at

the n and greater failure levels.

The tightness of these bounds is measured by their difference, SF(n). If this ap-

proximation is too large for the given problem, then the model must be con-

structed out to the next failure level. For most highly reliable, integrated control

systems, three to five failure levels provides sufficient accuracy. Given the exam-

ple of a 20-component system needing 106 states to model all 20 failure levels,

truncating the model at the third failure level requires 212 states. Hence, there is a

substantial savings in using model truncation.

Returning to the truncated model in Figure 4-10, a further reduction in the size of

the state space can be made. The transition rates from the operational states at the

(n-I) failure level to the SF(n) state are allowed to be approximations. Therefore,

it is convenient to set all of the "a" rates equal. The rates "a" must be equal to, or

greater than, the exact rates. For example, they may be set to the maximum of the

exact rates or to the sum of all the component rates. The latter case may be inter-

preted as assuming that any component can fail at the (n-I) failure level, even

components that have previously failed. This ensures that the rates "a" are identi-

cal and are greater than the exact exit transition rates. Since the operational states

at the (n-1) failure level all have the same exit transition rates and they lead to the

same destination, they can be exactly aggregated into states with common opera-

tional modes. This aggregation is shown in Figure 4-12.

Figure 4-12. Truncated Markov Model with Aggregation

nF
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Theability to aggregatestatesat the(n-l) failure levelprovidesafurtherreduction
in thesizeof thestatespace.For example,the20-componentsystemthat requires
106stateswithout truncation,and212stateswhentruncatedatthethird failure
level,takesonly 24stateswhenthesecond-failure-levelstatesareaggregatedinto
a single-system-failurestateanda singleoperationalstate.

NUMERICAL SOLUTIONS OF MARKOV MODELS

As has been seen, moderate-size, fault-tolerant systems (for example, with

20 components) generate reliability models with approximately 20 to 100 states

depending on how the model is truncated and aggregated, how many operating

modes are present, and whether or not the components have imperfect coverage.

Given models of this size or larger, it is impractical to obtain closed form solu-

tions. The most efficient means of obtaining results is a numerical solution of the

Markov model.

As has been seen in previous sections, the Markov model represents a system of

differential equations. For example, the parallel system in Figure 4-3 has the state

equations

* dPl(t)ldt = ((_'A + _'B) PI(t)

* dP2(t)ldt = _'A PI(t) --_'B P2(t)

* dP3(t)/dt = _'B PI(t) -_'A P3(t)

* dP4(t)/dt = _'B P2(t)

* dP5(t)ldt = _'A P3(t)

These can be written in matrix form:

['-(_A +_'B) 0 0 0 07

I _A -_'B 0 0 01

dP(t) = I _'B 0 -_'A 0 o lp(t)

dt I 0 _'B 0 0 0 I

L o o  ,ooJ
where the state vector is

P(t) = [Pl(t), P2(t), P3(t), P4(t), P5(t)] t
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Noticethatthecolumnsaddto zero.Thisrepresentsaconservationpropertyof the

system: all flows leaving a state must enter another state, and transitions do not

store any flow. The matrix equation may be written more concisely as

dP(t)/dt = A P(t) [Eq. 4-15]

Equation 4-15 is the continuous-time representation of the Markov model. Matrix

A is the continuous-time transition Matrix. While there are many ways of numeri-

cally integrating this equation, one that is particularly fast and accurate will be

shown [12]. To begin, the continuous differential is approximated with a discrete

time step:

[P(t+At) - P(t)]/At = A P(t)

P(t+At) = [I+A At] P(t)

P(t+At) = M P(t) [Eq. 4-16]

Matrix I is the identity matrix and M is the discrete-time transition matrix. The

use of the above approximation is called Euler integration.

Equation 4-16 represents an iterative solution for the Markov model. Given the

system's initial condition, P(0), it is possible to use Equation 4-16 to propagate

the state probability in time:

P(At) = M P(0)

P(2At) = M P(At)

P(3At) = M P(2At)

P(4At) = M P(3At)

P(5At) = M P(4At)

P(nAt) = M P((n- 1)At) [Eq. 4-17]

While this method is sufficiently stable for appropriate Ats, it can be rewritten in a

form that is faster to solve. If the state transition matrix M is constant in time (i.e.,

failure rates are constant in time) then the following observation can be made:

• P(At) = M P(0)

• P(2At) = M P(At) = M M P(0) = M 2 P(0)

• P(3At) = M P(2At) = M M M P(0) = M 3 P(0)

• etc.
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In general, the state probability at time t = m At is

P(mAt) = M m P(O) [Eq. 4-18]

It is efficient to represent m as a binary number. The digits of this number repre-

sent a recipe for the powers of 2 required to obtain M TM. For example, if m = 13,

its binary representation is 1101. Therefore, M 13 can be found by performing two

steps. First, calculate M 2, M 4, and M 8 by repeated squaring of matrix M. Second,

use the binary representation of 13 to determine which powers of M need to be

used. In this case, it is the 8 th, 4 th, and 1st powers that are needed. Performing

these indicated multiplications gives the result desired:

M 13 = M 8 M 4 M

To get a feel for the increase in speed obtained by this method of matrix doubling

(Equation 4-18) over that of traditional stepping in time (Equation 4-17), consider

a problem where the state vector dimension is n and the number of time steps re-

quired is m. For a matrix of dimension n by m, the process of squaring the matrix

takes on the order of n 3 operations. The process of multiplying a matrix by a vec-

tor takes on the order of n 2 operations. Hence, traditional stepping in time requires

(m n 2) operations to achieve a result. If m is an integer power of 2, then z matrix

doubles are required to obtain M TM, where z = integer[ln(m)/ln(2)]. Usually, m is

not an integer power of 2 so powers of M must be multiplied to obtain M m. On

average, this means that 1.5z matrix multipliers are needed. Therefore, the matrix

doubling method requires (1.5 z n 3) operations to get a solution.

Consider an example where the state vector dimension is n = 50. For a mission

time of t = 1,000 hours and a time step of At = 1 minute and m = 60,000 time

steps. Thus, z = 15. The number of operations for stepping in time (Equa-

tion 4-17) is 1.5x108 and the number of operations (on average) for matrix dou-

bling (Equation 4-18) is 2.8x106. For this case, stepping in time requires more

than 50 times the number of operations required for matrix doubling. Therefore,

when implemented on a computer, matrix doubling would be expected to be

50 times faster than stepping in time. A further improvement in speed can be ob-

tained by selecting a time step that gives an m that is an integer power of 2. For

example, At = 0.915 minutes gives m = 216. Therefore, z = 16, and only 16 matrix

multiplications are needed to obtain a result. The total operations for matrix dou-

bling in this case would be 2x 106. This would reduce computation time further by

a factor of 1.4.

One final note on integrating the state equations of a Markov model is the need

for double-precision calculations. Notice that on the diagonals of the discrete-time
transition matrix are terms like

1 - EAt
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where _, is a failure rate. Typical values for _, and At are _, = 10 -5 hrl and

At = 10 -2 hr. Thus, the diagonal entry is

1 - 10-7

Using a machine with single precision limits the accuracy of a number to ap-

proximately seven significant digits. Hence, the diagonal entry would be stored as

a 1. Squaring the matrix would maintain this 1 on the diagonal for all time. This

means that the state associated with this diagonal would never have flows leaving

it, even though flows would be appearing in states "downstream" of it. This vio-

lates the conservation of probability required for Markov models. Although the

solution can be performed in single precision, some subtle renormalization proce-

dures are required to maintain the conservation of probability. Performing the in-

tegration in double precision avoids this problem.
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